Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundGenome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk.MethodsWe integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested.ResultsIn GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model.ConclusionsThese post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies.

Original publication

DOI

10.1016/j.biopsych.2016.04.017

Type

Journal

Biological psychiatry

Publication Date

02/2017

Volume

81

Pages

336 - 346

Addresses

Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom. Electronic address: y.zeng-6@sms.ed.ac.uk.

Keywords

Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Humans, Genetic Predisposition to Disease, Nerve Growth Factors, Tumor Suppressor Proteins, Risk Factors, Depressive Disorder, Major, Signal Transduction, Multifactorial Inheritance, Polymorphism, Single Nucleotide, Adult, Middle Aged, Female, Male, Genome-Wide Association Study, Netrin-1