Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gut microbiota studies have been well-investigated for neurodegenerative diseases such as Alzheimer's and Parkinson's disease, however, fewer studies have comprehensively examined the gut microbiome in Motor Neuron Disease (MND), with none examining its impact on disease prognosis. Here, we investigate MND prognosis and the fecal microbiota, using 16S rRNA case-control data from 100 individuals with extensive medical histories and metabolic measurements. We contrast the composition and diversity of fecal microbiome signatures from 49 MND and 51 healthy controls by combining current gold-standard 16S microbiome pipelines. Using stringent quality control thresholds, we conducted qualitative assessment approaches including; direct comparison of taxa, PICRUSt2 predicted metagenomics, Shannon and Chao1-index and Firmicutes/Bacteroidetes ratio. We show that the fecal microbiome of patients with MND is not significantly different from that of healthy controls that were matched by age, sex, and BMI, however there are distinct differences in Beta-diversity in some patients with MND. Weight, BMI, and metabolic and clinical features of disease in patients with MND were not related to the composition of their fecal microbiome, however, we observe a greater risk for earlier death in patients with MND with increased richness and diversity of the microbiome, and in those with greater Firmicutes to Bacteroidetes ratio. This was independent of anthropometric, metabolic, or clinical features of disease, and warrants support for further gut microbiota studies in MND. Given the disease heterogeneity in MND, and complexity of the gut microbiota, large studies are necessary to determine the detailed role of the gut microbiota and MND prognosis.

Original publication

DOI

10.1080/21678421.2020.1772825

Type

Journal article

Journal

Amyotrophic lateral sclerosis & frontotemporal degeneration

Publication Date

11/2020

Volume

21

Pages

549 - 562

Addresses

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.

Keywords

Feces, Humans, Amyotrophic Lateral Sclerosis, Motor Neuron Disease, RNA, Ribosomal, 16S, Microbiota