Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Promoter-anchored chromatin interactions (PAIs) play a pivotal role in transcriptional regulation. Current high-throughput technologies for detecting PAIs, such as promoter capture Hi-C, are not scalable to large cohorts. Here, we present an analytical approach that uses summary-level data from cohort-based DNA methylation (DNAm) quantitative trait locus (mQTL) studies to predict PAIs. Using mQTL data from human peripheral blood ([Formula: see text]), we predict 34,797 PAIs which show strong overlap with the chromatin contacts identified by previous experimental assays. The promoter-interacting DNAm sites are enriched in enhancers or near expression QTLs. Genes whose promoters are involved in PAIs are more actively expressed, and gene pairs with promoter-promoter interactions are enriched for co-expression. Integration of the predicted PAIs with GWAS data highlight interactions among 601 DNAm sites associated with 15 complex traits. This study demonstrates the use of mQTL data to predict PAIs and provides insights into the role of PAIs in complex trait variation.

Original publication

DOI

10.1038/s41467-020-15587-0

Type

Journal article

Journal

Nature communications

Publication Date

04/2020

Volume

11

Addresses

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.

Keywords

Chromatin, Humans, Crohn Disease, DNA Methylation, DNA Replication, Gene Expression Regulation, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Promoter Regions, Genetic, Genome-Wide Association Study, Epigenomics, Data Analysis