Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Non-additive genetic variance for complex traits is traditionally estimated from data on relatives. It is notoriously difficult to estimate without bias in non-laboratory species, including humans, because of possible confounding with environmental covariance among relatives. In principle, non-additive variance attributable to common DNA variants can be estimated from a random sample of unrelated individuals with genome-wide SNP data. Here, we jointly estimate the proportion of variance explained by additive (hSNP2), dominance (δSNP2) and additive-by-additive (ηSNP2) genetic variance in a single analysis model. We first show by simulations that our model leads to unbiased estimates and provide a new theory to predict standard errors estimated using either least-squares or maximum likelihood. We then apply the model to 70 complex traits using 254,679 unrelated individuals from the UK Biobank and 1.1 M genotyped and imputed SNPs. We found strong evidence for additive variance (average across traits h¯SNP2=0.208). In contrast, the average estimate of δ¯SNP2 across traits was 0.001, implying negligible dominance variance at causal variants tagged by common SNPs. The average epistatic variance η¯SNP2 across the traits was 0.055, not significantly different from zero because of the large sampling variance. Our results provide new evidence that genetic variance for complex traits is predominantly additive and that sample sizes of many millions of unrelated individuals are needed to estimate epistatic variance with sufficient precision.

Original publication

DOI

10.1016/j.ajhg.2021.02.014

Type

Journal article

Journal

American journal of human genetics

Publication Date

05/2021

Volume

108

Pages

786 - 798

Addresses

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.

Keywords

Humans, Reproducibility of Results, Epistasis, Genetic, Genotype, Multifactorial Inheritance, Phenotype, Polymorphism, Single Nucleotide, Models, Genetic, Biological Specimen Banks, Female, Male, Datasets as Topic, United Kingdom