Mortality risks associated with empirical antibiotic activity in Escherichia coli bacteraemia: an analysis of electronic health records.
Yoon CH., Bartlett S., Stoesser N., Pouwels KB., Jones N., Crook DW., Peto TEA., Walker AS., Eyre DW.
BackgroundReported bacteraemia outcomes following inactive empirical antibiotics (based on in vitro testing) are conflicting, potentially reflecting heterogeneity in causative species, MIC breakpoints defining resistance/susceptibility, and times to rescue therapy.MethodsWe investigated adult inpatients with Escherichia coli bacteraemia at Oxford University Hospitals, UK, from 4 February 2014 to 30 June 2021 who were receiving empirical amoxicillin/clavulanate with/without other antibiotics. We used Cox regression to analyse 30 day all-cause mortality by in vitro amoxicillin/clavulanate susceptibility (activity) using the EUCAST resistance breakpoint (>8/2 mg/L), categorical MIC, and a higher resistance breakpoint (>32/2 mg/L), adjusting for other antibiotic activity and confounders including comorbidities, vital signs and blood tests.ResultsA total of 1720 E. coli bacteraemias (1626 patients) were treated with empirical amoxicillin/clavulanate. Thirty-day mortality was 193/1400 (14%) for any active baseline therapy and 52/320 (16%) for inactive baseline therapy (P = 0.17). With EUCAST breakpoints, there was no evidence that mortality differed for inactive versus active amoxicillin/clavulanate [adjusted HR (aHR) = 1.27 (95% CI 0.83-1.93); P = 0.28], nor of an association with active aminoglycoside (P = 0.93) or other active antibiotics (P = 0.18). Considering categorical amoxicillin/clavulanate MIC, MICs > 32/2 mg/L were associated with mortality [aHR = 1.85 versus MIC = 2/2 mg/L (95% CI 0.99-3.73); P = 0.054]. A higher resistance breakpoint (>32/2 mg/L) was independently associated with higher mortality [aHR = 1.82 (95% CI 1.07-3.10); P = 0.027], as were MICs > 32/2 mg/L with active empirical aminoglycosides [aHR = 2.34 (95% CI 1.40-3.89); P = 0.001], but not MICs > 32/2 mg/L with active non-aminoglycoside antibiotic(s) [aHR = 0.87 (95% CI 0.40-1.89); P = 0.72].ConclusionsWe found no evidence that EUCAST-defined amoxicillin/clavulanate resistance was associated with increased mortality, but a higher resistance breakpoint (MIC > 32/2 mg/L) was. Additional active baseline non-aminoglycoside antibiotics attenuated amoxicillin/clavulanate resistance-associated mortality, but aminoglycosides did not. Granular phenotyping and comparison with clinical outcomes may improve AMR breakpoints.