Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of translating ENIGMA-defined MDD deficit patterns to the individual level. We treated ENIGMA MDD deficit patterns as a vector to gauge the similarity between individual and MDD patterns by calculating ENIGMA dot product (EDP). We analyzed the sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear alternative to the brain age metric) and the global gray matter thickness and subcortical volumes and fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F). Group-average increases in depressive symptoms from controls to recurrent MDD was mirrored by EDP (r2=0.85), followed by FA (r2=0.81) and QRI (r2=0.56). Subjects with MDD showed worse performance on cognitive tests than controls with deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated correlations of EDP and other brain indices with measures of cognitive performance in controls. The correlation pattern between EDP and cognition in controls was similar (r2=0.75) to the pattern of cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated with cognitive performance - specifically in the MDD-affected domains. That specificity was missing for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta-analytic indices of similarity using a linear vector approach led to better sensitivity to depressive symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated aging.


Journal article


Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

Publication Date





133 - 143


Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,


Brain, Humans, Magnetic Resonance Imaging, Depression, Cognition, Depressive Disorder, Major, Computational Biology, Big Data