Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Trp229 is part of the nonnucleoside reverse transcriptase inhibitor (NNRTI)-binding pocket of HIV-1 reverse transcriptase (RT). It is also an important constituent of the so-called "primer grip." Using a recombinant virus assay, we tried to obtain recombinant virus containing a Trp229Phe or a Trp229Tyr mutation in its RT. Previous studies already established the very low DNA polymerase activities of both the Trp229Phe and the Trp229Tyr mutant RT enzymes. We were able to obtain a Trp229Tyr but not a Trp229Phe mutant virus. However, in addition to the Trp229Tyr mutation this mutant virus also contained an Ile63Met, a Val189Ile, and a Glu396Gly mutation in its RT. When we evaluated the quadruple mutant virus for sensitivity/resistance against a variety of NNRTIs, no significant difference with the sensitivity/resistance profile of the single Trp229Tyr mutant RT enzyme could be observed. We found that the three additional mutations partly restored the low RNA- and DNA-dependent DNA polymerase activities of the Trp229Tyr mutant enzyme. Kinetic analysis revealed that both template/primer binding and dNTP incorporation are affected by the Trp229Tyr mutation. Our findings demonstrate that a mutation at position 229 is unlikely to occur under NNRTI drug pressure due to the poor catalytic activity of the singly mutated RT and the favorable drug sensitivity profile of the mutated enzyme/viruses in both the absence and the presence of the compensatory mutations. Therefore, amino acid position 229 may be regarded as an excellent amino acid target within the NNRTI pocket for rational drug design.

Original publication




Journal article



Publication Date





143 - 150


Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, B-3000, Belgium.


Cell Line, Humans, DNA-Directed DNA Polymerase, Amino Acids, Deoxyguanine Nucleotides, Amino Acid Substitution, Mutagenesis, Site-Directed, Structure-Activity Relationship, Kinetics, Catalysis, Models, Molecular, Ribonuclease H, HIV Reverse Transcriptase