Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Colonoscopy is the third leading cause of cancer deaths worldwide. While automated segmentation methods can help detect polyps and consequently improve their surgical removal, the clinical usability of these methods requires a trade-off between accuracy and speed. In this work, we exploit the traditional U-Net methods and compare different segmentation-loss functions. Our results demonstrate that IoU loss results in an improved segmentation performance (nearly 3% improvement on Dice) for real-time polyp segmentation.

Type

Conference paper

Publication Date

01/01/2020

Volume

2882