Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Summary statistics, often derived from simplified models of epidemic spread, inform public health policy in real time. The instantaneous reproduction number, R t , is predominant among these statistics, measuring the average ability of an infection to multiply. However, R t encodes no temporal information and is sensitive to modelling assumptions. Consequently, some have proposed the epidemic growth rate, r t , i.e., the rate of change of the log-transformed case incidence, as a more temporally meaningful and model-agnostic policy guide. We examine this assertion, identifying if and when estimates of r t are more informative than those of R t . We assess their relative strengths both for learning about pathogen transmission mechanisms and for guiding epidemic interventions in real time.

Original publication




Journal article

Publication Date