Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In neuroimaging cluster-based inference has generally been found to be more powerful than voxel-wise inference. However standard cluster-based methods assume stationarity (constant smoothness), while under nonstationarity clusters are larger in smooth regions just by chance, making false positive risk spatially variant. Hayasaka et al. proposed a Random Field Theory (RFT) based nonstationarity adjustment for cluster inference and validated the method in terms of controlling the overall family-wise false positive rate. The RFT-based methods, however, have never been directly assessed in terms of homogeneity of local false positive risk. In this work we propose a new cluster size adjustment that accounts for local smoothness, based on local empirical cluster size distributions and a two-pass permutation method. We also propose a new approach to measure homogeneity of local false positive risk, and use this method to compare the RFT-based and our new empirical adjustment methods. We apply these techniques to both cluster-based and a related inference, threshold-free cluster enhancement (TFCE). Using simulated and real data we confirm the expected heterogeneity in false positive risk with unadjusted cluster inference but find that RFT-based adjustment does not fully eliminate heterogeneity; we also observe that our proposed empirical adjustment dramatically increases the homogeneity and TFCE inference is generally quite robust to nonstationarity.

Type

Conference paper

Publication Date

01/2009

Volume

12

Pages

992 - 999

Addresses

Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK. reza@fmrib.ox.ac.uk

Keywords

Brain, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Image Enhancement, Brain Mapping, Data Interpretation, Statistical, Models, Statistical, Sensitivity and Specificity, Stochastic Processes, Reproducibility of Results, Algorithms, Models, Neurological, Computer Simulation