Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This article discusses general modeling of multisubject and/or multisession FMRI data. In particular, we show that a two-level mixed-effects model (where parameters of interest at the group level are estimated from parameter and variance estimates from the single-session level) can be made equivalent to a single complete mixed-effects model (where parameters of interest at the group level are estimated directly from all of the original single sessions' time series data) if the (co-)variance at the second level is set equal to the sum of the (co-)variances in the single-level form, using the BLUE with known covariances. This result has significant implications for group studies in FMRI, since it shows that the group analysis requires only values of the parameter estimates and their (co-)variance from the first level, generalizing the well-established "summary statistics" approach in FMRI. The simple and generalized framework allows different prewhitening and different first-level regressors to be used for each subject. The framework incorporates multiple levels and cases such as repeated measures, paired or unpaired t tests and F tests at the group level; explicit examples of such models are given in the article. Using numerical simulations based on typical first-level covariance structures from real FMRI data we demonstrate that by taking into account lower-level covariances and heterogeneity a substantial increase in higher-level Z score is possible.

Original publication

DOI

10.1016/s1053-8119(03)00435-x

Type

Journal article

Journal

NeuroImage

Publication Date

10/2003

Volume

20

Pages

1052 - 1063

Addresses

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, OX3 9DU, UK. beckmann@fmrib.ox.ac.uk

Keywords

Humans, Magnetic Resonance Imaging, Linear Models, Bayes Theorem, Cerebrovascular Circulation, Algorithms, Computer Simulation, Image Processing, Computer-Assisted, Hemodynamics