Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2020 IEEE. Single-molecule localization microscopy (SMLM) is a super-resolution imaging technique developed to image structures smaller than the diffraction limit. This modality results in sparse and non-uniform sets of localized blinks that need to be reconstructed to obtain a super-resolution representation of a tissue. In this paper, we explore the use of the Noise2Noise (N2N) paradigm to reconstruct the SMLM images. Noise2Noise is an image denoising technique where a neural network is trained with only pairs of noisy realizations of the data instead of using pairs of noisy/clean images, as performed with Noise2Clean (N2C). Here we have adapted Noise2Noise to the 2D SMLM reconstruction problem, exploring different pair creation strategies (fixed and dynamic). The approach was applied to synthetic data and to real 2D SMLM data of actin filaments. This revealed that N2N can achieve reconstruction performances close to the Noise2Clean training strategy, without having access to the super-resolution images. This could open the way to further improvement in SMLM acquisition speed and reconstruction performance.

Original publication

DOI

10.1109/ISBI45749.2020.9098713

Type

Conference paper

Publication Date

03/04/2020

Volume

2020-April

Pages

1596 - 1599