Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background:Provision of antiretroviral therapy (ART) during conflict settings is rarely attempted and little is known about the expected patterns of mortality. The Central African Republic (CAR) continues to have a low coverage of ART despite an estimated 110,000 people living with HIV and 5000 AIDS-related deaths in 2018. We present results from a cohort in Zemio, Haut-Mboumou prefecture. This region had the highest prevalence of HIV nationally (14.8% in a 2010 survey), and was subject to repeated attacks by armed groups on civilians during the observed period. Methods:Conflict from armed groups can impact cohort mortality rates i) directly if HIV patients are victims of armed conflict, or ii) indirectly if population displacement or fear of movement reduces access to ART. Using monthly counts of civilian deaths, injuries and abductions, we estimated the impact of the conflict on patient mortality. We also determined patient-level risk factors for mortality and how the risk of mortality varies with time spent in the cohort. Model-fitting was performed in a Bayesian framework, using logistic regression with terms accounting for temporal autocorrelation. Results:Patients were recruited and observed in the HIV treatment program from October 2011 to May 2017. Overall 1631 patients were enrolled and 1628 were included in the analysis giving 48,430 person-months at risk and 145 deaths. The crude mortality rate after 12 months was 0.92 (95% CI 0.90, 0.93). Our model showed that patient mortality did not increase during periods of heightened conflict; the odds ratios (OR) 95% credible interval (CrI) for i) civilian fatalities and injuries, and ii) civilian abductions on patient mortality both spanned unity. The risk of mortality for individual patients was highest in the second month after entering the cohort, and declined seven-fold over the first 12 months. Male sex was associated with a higher mortality (odds ratio 1.70 [95% CrI 1.20, 2.33]) along with the severity of opportunistic infections (OIs) at baseline (OR 2.52; 95% CrI 2.01, 3.23 for stage 2 OIs compared with stage 1). Conclusions:Our results show that chronic conflict did not appear to adversely affect rates of mortality in this cohort, and that mortality was driven predominantly by patient-specific risk factors. The risk of mortality and recovery of CD4 T-cell counts observed in this conflict setting are comparable to those in stable resource poor settings, suggesting that conflict should not be a barrier in access to ART.

Original publication

DOI

10.1186/s13031-019-0236-7

Type

Journal article

Journal

Conflict and health

Publication Date

01/2019

Volume

13

Addresses

Médecins Sans Frontières Hollande, Avenue Barthelemy Boganda, PK4, Bangui, BP 1793 Central African Republic.