Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectivesEarly warning scores (EWS) alerting for in-hospital deterioration are commonly developed using routinely collected vital-sign data from the whole in-hospital population. As these in-hospital populations are dominated by those over the age of 45 years, resultant scores may perform less well in younger age groups. We developed and validated an age-specific early warning score (ASEWS) derived from statistical distributions of vital signs.DesignObservational cohort study.SettingOxford University Hospitals (OUH) July 2013 to March 2018 and Portsmouth Hospitals (PH) NHS Trust January 2010 to March 2017 within the Hospital Alerting Via Electronic Noticeboard database.ParticipantsHospitalised patients with electronically documented vital-sign observations OUTCOME: Composite outcome of unplanned intensive care unit admission, mortality and cardiac arrest.Methods and resultsStatistical distributions of vital signs were used to develop an ASEWS to predict the composite outcome within 24 hours. The OUH development set consisted of 2 538 099 vital-sign observation sets from 142 806 admissions (mean age (SD): 59.8 (20.3)). We compared the performance of ASEWS to the National Early Warning Score (NEWS) and our previous EWS (MCEWS) on an OUH validation set consisting of 581 571 observation sets from 25 407 emergency admissions (mean age (SD): 63.0 (21.4)) and a PH validation set consisting of 5 865 997 observation sets from 233 632 emergency admissions (mean age (SD): 64.3 (21.1)). ASEWS performed better in the 16-45 years age group in the OUH validation set (AUROC 0.820 (95% CI 0.815 to 0.824)) and PH validation set (AUROC 0.840 (95% CI 0.839 to 0.841)) than NEWS (AUROC 0.763 (95% CI 0.758 to 0.768) and AUROC 0.836 (95% CI 0.835 to 0.838) respectively) and MCEWS (AUROC 0.808 (95% CI 0.803 to 0.812) and AUROC 0.833 (95% CI 0.831 to 0.834) respectively). Differences in performance were not consistent in the elder age group.ConclusionsAccounting for age-related vital sign changes can more accurately detect deterioration in younger patients.

Original publication

DOI

10.1136/bmjopen-2019-033301

Type

Journal article

Journal

BMJ open

Publication Date

11/2019

Volume

9

Addresses

Institute of Biomedical Engineering, University of Oxford, Oxford, UK farah.shamout@balliol.ox.ac.uk.

Keywords

Humans, Heart Arrest, Hospitalization, Hospital Mortality, Risk Assessment, Cohort Studies, ROC Curve, Databases, Factual, Aged, Middle Aged, Intensive Care Units, Female, Male, Vital Signs, United Kingdom, Early Warning Score