Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Radial wavelet networks have recently been proposed as a method for nonparametric regression. In this paper we analyze their performance within a Bayesian framework. We derive probability distributions over both the dimension of the networks and the network coefficients by placing a prior on the degrees of freedom of the model. This process bypasses the need to test or select a finite number of networks during the modeling process. Predictions are formed by mixing over many models of varying dimension and parameterization.We show that the complexity of the models adapts to the complexity of the data and produces good results on a number of benchmark test series.

Original publication

DOI

10.1109/72.822507

Type

Journal article

Journal

Ieee transactions on neural networks

Publication Date

01/2000

Volume

11

Pages

27 - 35

Addresses

Department of Mathematics, Imperial College, London, SW7 2BZ, UK. c.holmes@ic.ac.uk