Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Resistance against different antibiotics appears on the same bacterial strains more often than expected by chance, leading to high frequencies of multidrug resistance. There are multiple explanations for this observation, but these tend to be specific to subsets of antibiotics and/or bacterial species, whereas the trend is pervasive. Here, we consider the question in terms of strain ecology: explaining why resistance to different antibiotics is often seen on the same strain requires an understanding of the competition between strains with different resistance profiles. This work builds on models originally proposed to explain another aspect of strain competition: the stable coexistence of antibiotic sensitivity and resistance observed in a number of bacterial species. We first identify a partial structural similarity in these models: either strain or host population structure stratifies the pathogen population into evolutionarily independent sub-populations and introduces variation in the fitness effect of resistance between these sub-populations, thus creating niches for sensitivity and resistance. We then generalise this unified underlying model to multidrug resistance and show that models with this structure predict high levels of association between resistance to different drugs and high multidrug resistance frequencies. We test predictions from this model in six bacterial datasets and find them to be qualitatively consistent with observed trends. The higher than expected frequencies of multidrug resistance are often interpreted as evidence that these strains are out-competing strains with lower resistance multiplicity. Our work provides an alternative explanation that is compatible with long-term stability in resistance frequencies.

Original publication

DOI

10.1371/journal.ppat.1007763

Type

Journal article

Journal

PLoS pathogens

Publication Date

13/05/2019

Volume

15

Addresses

Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.

Keywords

with the Maela Pneumococcal Collaboration