Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIM:The National Early Warning System (NEWS) is based on vital signs; the Laboratory Decision Tree Early Warning Score (LDT-EWS) on laboratory test results. We aimed to develop and validate a new EWS (the LDTEWS:NEWS risk index) by combining the two and evaluating the discrimination of the primary outcome of unanticipated intensive care unit (ICU) admission or in-hospital mortality, within 24 h. METHODS:We studied emergency medical admissions, aged 16 years or over, admitted to Oxford University Hospitals (OUH) and Portsmouth Hospitals (PH). Each admission had vital signs and laboratory tests measured within their hospital stay. We combined LDT-EWS and NEWS values using a linear time-decay weighting function imposed on the most recent blood tests. The LDTEWS:NEWS risk index was developed using data from 5 years of admissions to PH, and validated on a year of data from both PH and OUH. We tested the risk index's ability to discriminate the primary outcome using the c-statistic. RESULTS:The development cohort contained 97,933 admissions (median age = 73 years) of which 4723 (4.8%) resulted inhospital death and 1078 (1.1%) in unanticipated ICU admission. We validated the risk index using data from PH (n = 21,028) and OUH (n = 16,383). The risk index showed a higher discrimination in the validation sets (c-statistic value (95% CI)) (PH, 0.901 (0.898-0.905); OUH, 0.916 (0.911-0.921)), than NEWS alone (PH, 0.877 (0.873-0.882); OUH, 0.898 (0.893-0.904)). CONCLUSIONS:The LDTEWS:NEWS risk index increases the ability to identify patients at risk of deterioration, compared to NEWS alone.

Original publication

DOI

10.1016/j.resuscitation.2018.09.021

Type

Journal article

Journal

Resuscitation

Publication Date

12/2018

Volume

133

Pages

75 - 81

Addresses

Centre for Healthcare Modelling and Informatics, University of Portsmouth, Portsmouth, UK.