Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

More and more large-scale imaging genetic studies are being widely conducted to collect a rich set of imaging, genetic, and clinical data to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. Several major big-data challenges arise from testing genome-wide (NC>12 million known variants) associations with signals at millions of locations (NV~10(6)) in the brain from thousands of subjects (n~10(3)). The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS) framework to efficiently carry out whole-genome analyses of whole-brain data. FVGWAS consists of three components including a heteroscedastic linear model, a global sure independence screening (GSIS) procedure, and a detection procedure based on wild bootstrap methods. Specifically, for standard linear association, the computational complexity is O (nNVNC) for voxelwise genome wide association analysis (VGWAS) method compared with O ((NC+NV)n(2)) for FVGWAS. Simulation studies show that FVGWAS is an efficient method of searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. Finally, we have successfully applied FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects, 193,275voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645s for a single CPU. Our FVGWAS may be a valuable statistical toolbox for large-scale imaging genetic analysis as the field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing.

Original publication

DOI

10.1016/j.neuroimage.2015.05.043

Type

Journal article

Journal

NeuroImage

Publication Date

09/2015

Volume

118

Pages

613 - 627

Addresses

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

Keywords

Alzheimer's Disease Neuroimaging Initiative, Brain, Humans, Genetic Predisposition to Disease, Genotype, Algorithms, Software, Genome-Wide Association Study