Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tracking the spread of antimicrobial-resistant Neisseria gonorrhoeae is a major priority for national surveillance programmes.We investigate whether WGS and simultaneous analysis of multiple resistance determinants can be used to predict antimicrobial susceptibilities to the level of MICs in N. gonorrhoeae.WGS was used to identify previously reported potential resistance determinants in 681 N. gonorrhoeae isolates, from England, the USA and Canada, with phenotypes for cefixime, penicillin, azithromycin, ciprofloxacin and tetracycline determined as part of national surveillance programmes. Multivariate linear regression models were used to identify genetic predictors of MIC. Model performance was assessed using leave-one-out cross-validation.Overall 1785/3380 (53%) MIC values were predicted to the nearest doubling dilution and 3147 (93%) within ±1 doubling dilution and 3314 (98%) within ±2 doubling dilutions. MIC prediction performance was similar across the five antimicrobials tested. Prediction models included the majority of previously reported resistance determinants. Applying EUCAST breakpoints to MIC predictions, the overall very major error (VME; phenotypically resistant, WGS-prediction susceptible) rate was 21/1577 (1.3%, 95% CI 0.8%-2.0%) and the major error (ME; phenotypically susceptible, WGS-prediction resistant) rate was 20/1186 (1.7%, 1.0%-2.6%). VME rates met regulatory thresholds for all antimicrobials except cefixime and ME rates for all antimicrobials except tetracycline. Country of testing was a strongly significant predictor of MIC for all five antimicrobials.We demonstrate a WGS-based MIC prediction approach that allows reliable MIC prediction for five gonorrhoea antimicrobials. Our approach should allow reasonably precise prediction of MICs for a range of bacterial species.

Original publication

DOI

10.1093/jac/dkx067

Type

Journal article

Journal

The Journal of antimicrobial chemotherapy

Publication Date

07/2017

Volume

72

Pages

1937 - 1947

Addresses

Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Keywords

Humans, Neisseria gonorrhoeae, Gonorrhea, Cefixime, Penicillin G, Azithromycin, Ciprofloxacin, Tetracycline, Anti-Bacterial Agents, Microbial Sensitivity Tests, Drug Resistance, Bacterial, Genome, Bacterial, Canada, United States, England, High-Throughput Nucleotide Sequencing, Whole Genome Sequencing