Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The HPTN 052 trial confirmed that antiretroviral therapy (ART) can nearly eliminate HIV transmission from successfully treated HIV-infected individuals within couples. Here, we present the mathematical modeling used to inform the design and monitoring of a new trial aiming to test whether widespread provision of ART is feasible and can substantially reduce population-level HIV incidence.The HPTN 071 (PopART) trial is a three-arm cluster-randomized trial of 21 large population clusters in Zambia and South Africa, starting in 2013. A combination prevention package including home-based voluntary testing and counseling, and ART for HIV positive individuals, will be delivered in arms A and B, with ART offered universally in arm A and according to national guidelines in arm B. Arm C will be the control arm. The primary endpoint is the cumulative three-year HIV incidence. We developed a mathematical model of heterosexual HIV transmission, informed by recent data on HIV-1 natural history. We focused on realistically modeling the intervention package. Parameters were calibrated to data previously collected in these communities and national surveillance data. We predict that, if targets are reached, HIV incidence over three years will drop by >60% in arm A and >25% in arm B, relative to arm C. The considerable uncertainty in the predicted reduction in incidence justifies the need for a trial. The main drivers of this uncertainty are possible community-level behavioral changes associated with the intervention, uptake of testing and treatment, as well as ART retention and adherence.The HPTN 071 (PopART) trial intervention could reduce HIV population-level incidence by >60% over three years. This intervention could serve as a paradigm for national or supra-national implementation. Our analysis highlights the role mathematical modeling can play in trial development and monitoring, and more widely in evaluating the impact of treatment as prevention.

Original publication

DOI

10.1371/journal.pone.0084511

Type

Journal article

Journal

PloS one

Publication Date

15/01/2014

Volume

9

Addresses

MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.

Keywords

HPTN 071 PopART Study Team, Humans, HIV Infections, Anti-HIV Agents, AIDS Serodiagnosis, Cluster Analysis, South Africa, Zambia