Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deformable medical image registration requires the optimisation of a function with a large number of degrees of freedom. Commonly-used approaches to reduce the computational complexity, such as uniform B-splines and Gaussian image pyramids, introduce translation-invariant homogeneous smoothing, and may lead to less accurate registration in particular for motion fields with discontinuities. This paper introduces the concept of sparse image representation based on supervoxels, which are edge-preserving and therefore enable accurate modelling of sliding organ motions frequently seen in respiratory and cardiac scans. Previous shortcomings of using supervoxels in motion estimation, in particular inconsistent clustering in ambiguous regions, are overcome by employing multiple layers of supervoxels. Furthermore, we propose a new similarity criterion based on a binary shape representation of supervoxels, which improves the accuracy of single-modal registration and enables multimodal registration. We validate our findings based on the registration of two challenging clinical applications of volumetric deformable registration: motion estimation between inhale and exhale phase of CT scans for radiotherapy planning, and deformable multi-modal registration of diagnostic MRI and CT chest scans. The experiments demonstrate state-of-the-art registration accuracy, and require no additional anatomical knowledge with greatly reduced computational complexity.

Original publication

DOI

10.1007/978-3-642-38868-2_39

Type

Journal article

Journal

Information processing in medical imaging : proceedings of the ... conference

Publication Date

01/2013

Volume

23

Pages

463 - 474

Keywords

Lung, Humans, Image Interpretation, Computer-Assisted, Tomography, X-Ray Computed, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Image Enhancement, Radiography, Thoracic, Subtraction Technique, Sensitivity and Specificity, Reproducibility of Results, Algorithms, Pattern Recognition, Automated, Multimodal Imaging