Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In Brassica species, self-incompatibility is controlled genetically by haplotypes involving two known genes, SLG and SRK, and possibly an as yet unknown gene controlling pollen incompatibility types. Alleles at the incompatibility loci are maintained by frequency-dependent selection, and diversity at SLG and SRK appears to be very ancient, with high diversity at silent and replacement sites, particularly in certain "hypervariable" portions of the genes. It is important to test whether recombination occurs in these genes before inferences about function of different parts of the genes can be made from patterns of diversity within their sequences. In addition, it has been suggested that, to maintain the relationship between alleles within a given S-haplotype, recombination is suppressed in the S-locus region. The high diversity makes many population genetic measures of recombination inapplicable. We have analyzed linkage disequilibrium within the SLG gene of two Brassica species, using published coding sequences. The results suggest that intragenic recombination has occurred in the evolutionary history of these alleles. This is supported by patterns of synonymous nucleotide diversity within both the SLG and SRK genes, and between domains of the SRK gene. Finally, clusters of linkage disequilibrium within the SLG gene suggest that hypervariable regions are under balancing selection, and are not merely regions of relaxed selective constraint.

Original publication

DOI

10.1093/genetics/152.1.413

Type

Journal article

Journal

Genetics

Publication Date

05/1999

Volume

152

Pages

413 - 425

Addresses

Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom. p.awadalla@ed.ac.uk

Keywords

Brassica, Protein Kinases, Glycoproteins, Plant Proteins, Models, Statistical, Chi-Square Distribution, Recombination, Genetic, Haplotypes, Linkage Disequilibrium, Models, Genetic, Databases, Factual, Genetic Variation