Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundMicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Perturbations in plasma miRNA levels are known to impact disease risk and have potential as disease biomarkers. Exploring the genetic regulation of miRNAs may yield new insights into their important role in governing gene expression and disease mechanisms.ResultsWe present genome-wide association studies of 2083 plasma circulating miRNAs in 2178 participants of the Rotterdam Study to identify miRNA-expression quantitative trait loci (miR-eQTLs). We identify 3292 associations between 1289 SNPs and 63 miRNAs, of which 65% are replicated in two independent cohorts. We demonstrate that plasma miR-eQTLs co-localise with gene expression, protein, and metabolite-QTLs, which help in identifying miRNA-regulated pathways. We investigate consequences of alteration in circulating miRNA levels on a wide range of clinical conditions in phenome-wide association studies and Mendelian randomisation using the UK Biobank data (N = 423,419), revealing the pleiotropic and causal effects of several miRNAs on various clinical conditions. In the Mendelian randomisation analysis, we find a protective causal effect of miR-1908-5p on the risk of benign colon neoplasm and show that this effect is independent of its host gene (FADS1).ConclusionsThis study enriches our understanding of the genetic architecture of plasma miRNAs and explores the signatures of miRNAs across a wide range of clinical conditions. The integration of population-based genomics, other omics layers, and clinical data presents opportunities to unravel potential clinical significance of miRNAs and provides tools for novel miRNA-based therapeutic target discovery.

Original publication

DOI

10.1186/s13059-024-03420-6

Type

Journal

Genome biology

Publication Date

10/2024

Volume

25

Addresses

Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.

Keywords

Humans, Colonic Neoplasms, Genetic Predisposition to Disease, MicroRNAs, Gene Expression Regulation, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Aged, Middle Aged, Female, Male, Genome-Wide Association Study, Mendelian Randomization Analysis, Circulating MicroRNA