Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Across species, offspring of related individuals often exhibit significant reduction in fitness-related traits, known as inbreeding depression (ID), yet the genetic and molecular basis for ID remains elusive. Here, we develop a method to quantify enrichment of ID within specific genomic annotations and apply it to human data. We analyzed the phenomes and genomes of ∼350,000 unrelated participants of the UK Biobank and found, on average of over 11 traits, significant enrichment of ID within genomic regions with high recombination rates (>21-fold; p < 10-5), with conserved function across species (>19-fold; p < 10-4), and within regulatory elements such as DNase I hypersensitive sites (∼5-fold; p = 8.9 × 10-7). We also quantified enrichment of ID within trait-associated regions and found suggestive evidence that genomic regions contributing to additive genetic variance in the population are enriched for ID signal. We find strong correlations between functional enrichment of SNP-based heritability and that of ID (r = 0.8, standard error: 0.1). These findings provide empirical evidence that ID is most likely due to many partially recessive deleterious alleles in low linkage disequilibrium regions of the genome. Our study suggests that functional characterization of ID may further elucidate the genetic architectures and biological mechanisms underlying complex traits and diseases.

Original publication

DOI

10.1016/j.ajhg.2021.06.005

Type

Journal article

Journal

American journal of human genetics

Publication Date

08/2021

Volume

108

Pages

1488 - 1501

Addresses

Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia. Electronic address: l.yengodimbou@uq.edu.au.

Keywords

Humans, Genomics, Multifactorial Inheritance, Linkage Disequilibrium, Phenotype, Polymorphism, Single Nucleotide, Female, Male, Genome-Wide Association Study, Inbreeding Depression