Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Damage to cartilage is an important indicator of osteoarthritis progression, but manual extraction of cartilage morphology is time-consuming and prone to error. To address this, we hypothesize that automatic labeling of cartilage can be achieved through the comparison of contrasted and non-contrasted Computer Tomography (CT). However, this is non-trivial as the pre-clinical volumes are at arbitrary starting poses due to the lack of standardized acquisition protocols. Thus, we propose an annotation-free deep learning method, D-net, for accurate and automatic alignment of pre- and post-contrasted cartilage CT volumes. D-Net is based on a novel mutual attention network structure to capture large-range translation and full-range rotation without the need for a prior pose template. CT volumes of mice tibiae are used for validation, with synthetic transformation for training and tested with real pre- and post-contrasted CT volumes. Analysis of Variance (ANOVA) was used to compare the different network structures. Our proposed method, D-net, achieves a Dice coefficient of 0.87, and significantly outperforms other state-of-the-art deep learning models, in the real-world alignment of 50 pairs of pre- and post-contrasted CT volumes when cascaded as a multi-stage network.

Original publication

DOI

10.1016/j.compmedimag.2023.102204

Type

Journal article

Journal

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

Publication Date

06/2023

Volume

106

Addresses

The Kennedy Institute of Rheumatology, University of Oxford, UK. Electronic address: jianqing.zheng@kennedy.ox.ac.uk.

Keywords

Animals, Mice, Osteoarthritis, Tomography, X-Ray Computed, Image Processing, Computer-Assisted