Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Comparative analysis of Clostridioides difficile whole-genome sequencing (WGS) data enables fine scaled investigation of transmission and is increasingly becoming part of routine surveillance. However, these analyses are constrained by the computational requirements of the large volumes of data involved. By decomposing WGS reads or assemblies into k-mers and using the dimensionality reduction technique MinHash, it is possible to rapidly approximate genomic distances without alignment. Here we assessed the performance of MinHash, as implemented by sourmash, in predicting single nucleotide differences between genomes (SNPs) and C. difficile ribotypes (RTs). For a set of 1905 diverse C. difficile genomes (differing by 0-168 519 SNPs), using sourmash to screen for closely related genomes, at a sensitivity of 100 % for pairs ≤10 SNPs, sourmash reduced the number of pairs from 1 813 560 overall to 161 934, i.e. by 91 %, with a positive predictive value of 32 % to correctly identify pairs ≤10 SNPs (maximum SNP distance 4144). At a sensitivity of 95 %, pairs were reduced by 94 % to 108 266 and PPV increased to 45 % (maximum SNP distance 1009). Increasing the MinHash sketch size above 2000 produced minimal performance improvement. We also explored a MinHash similarity-based ribotype prediction method. Genomes with known ribotypes (n=3937) were split into a training set (2937) and test set (1000) randomly. The training set was used to construct a sourmash index against which genomes from the test set were compared. If the closest five genomes in the index had the same ribotype this was taken to predict the searched genome's ribotype. Using our MinHash ribotype index, predicted ribotypes were correct in 780/1000 (78 %) genomes, incorrect in 20 (2 %), and indeterminant in 200 (20 %). Relaxing the classifier to 4/5 closest matches with the same RT improved the correct predictions to 87 %. Using MinHash it is possible to subsample C. difficile genome k-mer hashes and use them to approximate small genomic differences within minutes, significantly reducing the search space for further analysis.

Original publication

DOI

10.1099/mgen.0.000804

Type

Journal article

Journal

Microbial genomics

Publication Date

04/2022

Volume

8

Addresses

Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Keywords

Humans, Clostridium Infections, Ribotyping, Whole Genome Sequencing, Clostridioides difficile, Clostridioides