Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundHeight and other anthropometric measures are consistently found to associate with differential cancer risk. However, both genetic and mechanistic insights into these epidemiological associations are notably lacking. Conversely, inherited genetic variants in tumour suppressors and oncogenes increase cancer risk, but little is known about their influence on anthropometric traits.MethodsBy integrating inherited and somatic cancer genetic data from the Genome-Wide Association Study Catalog, expression Quantitative Trait Loci databases and the Cancer Gene Census, we identify SNPs that associate with different cancer types and differential gene expression in at least one tissue type, and explore the potential pleiotropic associations of these SNPs with anthropometric traits through SNP-wise association in a cohort of 500,000 individuals.ResultsWe identify three regulatory SNPs for three important cancer genes, FANCA, MAP3K1 and TP53 that associate with both anthropometric traits and cancer risk. Of particular interest, we identify a previously unrecognised strong association between the rs78378222[C] SNP in the 3' untranslated region (3'-UTR) of TP53 and both increased risk for developing non-melanomatous skin cancer (OR=1.36 (95% 1.31 to 1.41), adjusted p=7.62E-63), brain malignancy (OR=3.12 (2.22 to 4.37), adjusted p=1.43E-12) and increased standing height (adjusted p=2.18E-24, beta=0.073±0.007), lean body mass (adjusted p=8.34E-37, beta=0.073±0.005) and basal metabolic rate (adjusted p=1.13E-31, beta=0.076±0.006), thus offering a novel genetic link between these anthropometric traits and cancer risk.ConclusionOur results clearly demonstrate that heritable variants in key cancer genes can associate with both differential cancer risk and anthropometric traits in the general population, thereby lending support for a genetic basis for linking these human phenotypes.

Original publication

DOI

10.1136/jmedgenet-2019-106799

Type

Journal article

Journal

Journal of medical genetics

Publication Date

06/2021

Volume

58

Pages

392 - 399

Addresses

Computational Biology & Integrative Genomics Lab, Department of Oncology, Medical Science Division, University of Oxford, Oxford, UK.

Keywords

Humans, Neoplasms, Genetic Predisposition to Disease, Anthropometry, Body Weights and Measures, Risk Assessment, Cohort Studies, Quantitative Trait, Heritable, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Oncogenes, Adult, Aged, Middle Aged, Female, Male, Genome-Wide Association Study, Genetic Linkage, Genetic Pleiotropy