Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Concept based video retrieval often relies on imperfect and uncertain concept detectors. We propose a general ranking framework to define effective and robust ranking functions, through explicitly addressing detector uncertainty. It can cope with multiple concept-based representations per video segment and it allows the re-use of effective text retrieval functions which are defined on similar representations. The final ranking status value is a weighted combination of two components: the expected score of the possible scores, which represents the risk-neutral choice, and the scores' standard deviation, which represents the risk or opportunity that the score for the actual representation is higher. The framework consistently improves the search performance in the shot retrieval task and the segment retrieval task over several baselines in five TRECVid collections and two collections which use simulated detectors of varying performance. © 2012 The Author(s).

Original publication

DOI

10.1007/s10791-012-9207-y

Type

Journal article

Journal

Information Retrieval

Publication Date

01/10/2013

Volume

16

Pages

557 - 583