Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Current sequencing technologies have created unprecedented opportunities for studying microbial populations. For pathogens with comparatively low per-site mutation rates, such as DNA viruses and bacteria, whole-genome sequencing can reveal the accumulation of novel genetic variation between population samples taken at different times. The concept of 'measurably evolving populations' and related analytical approaches have provided powerful insights for fast-evolving RNA viruses, but their application to other pathogens is still in its infancy. We argue that previous distinctions between slow- and fast-evolving pathogens become blurred once evolution is assessed at a genome-wide scale, and we highlight important analytical challenges to be overcome to infer pathogen population dynamics from genomic data.

Original publication




Journal article


Trends in ecology & evolution

Publication Date





306 - 313


Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK; Fogarty International Center, National Institutes of Health, Bethesda MD, USA. Electronic address:


Bacteria, RNA Viruses, Population Dynamics, Evolution, Molecular, Genome, Bacterial, Genome, Viral, Mutation Rate