Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • The mid-depth method and HIV-1: a practical approach for testing hypotheses of viral epidemic history.

    16 October 2018

    We introduce the mid-depth method, a practical approach for testing hypotheses of demographic history using genealogies reconstructed from sequence data. The relative positions of internal nodes within a genealogy contain information about past population dynamics. We explain how this information can be used to (1) test the null hypothesis of constant population size and (2) estimate the growth rate and current population size of an exponentially growing population. Simulation tests indicate that, as expected, estimates of exponential growth rates are sometimes biased. The mid-depth method is computationally rapid and does not require knowledge of the sample's mutation rate. However, it does assume that the reconstructed genealogy is correct and is therefore best suited to the analysis of variation-rich viral data sets. When applied to HIV-1 sequence data, the mid-depth method provides phylogenetic evidence of different exponential growth rates for subtypes A and B. We posit that this difference in growth rate reflects the different transmission routes and epidemiological histories of the two subtypes.

  • Transmission of hepatitis C virus infection among younger and older people who inject drugs in Vancouver, Canada.

    16 October 2018

    Understanding HCV transmission among people who inject drugs (PWID) is important for designing prevention strategies. This study investigated whether HCV infection among younger injectors occurs from few or many transmission events from older injectors to younger injectors among PWID in Vancouver, Canada.HCV antibody positive participants at enrolment or follow-up (1996-2012) were tested for HCV RNA and sequenced (Core-E2). Time-stamped phylogenetic trees were inferred using Bayesian Evolutionary Analysis Sampling Trees (BEAST). Association of age with phylogeny was tested using statistics implemented in the software Bayesian Tip Significance (BaTS) testing. Factors associated with clustering (maximum cluster age: five years) were identified using logistic regression.Among 699 participants with HCV subtype 1a, 1b, 2b and 3a infection (26% female, 24% HIV+): 21% were younger (<27years), and 10% had recent HCV seroconversion. When inferred cluster age was limited to <5years, 15% (n=108) were in clusters/pairs. Although a moderate degree of segregation was observed between younger and older participants, there was also transmission between age groups. Younger age (<27 vs. >40, AOR: 3.14; 95% CI: 1.54, 6.39), HIV (AOR: 1.97; 95% CI: 1.22, 3.18) and subtype 3a (AOR: 2.12; 95% CI: 1.33, 3.38) were independently associated with clustering.In this population of PWID from Vancouver, HCV among young injectors was seeded from many transmission events between HCV-infected older and younger injectors. Phylogenetic clustering was associated with younger age and HIV. These data suggest that HCV transmission among PWID is complex, with transmission occurring between and among older and younger PWID.

  • Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae.

    16 October 2018

    Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.

  • Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae.

    16 October 2018

    Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.

  • Measurably evolving pathogens in the genomic era.

    16 October 2018

    Current sequencing technologies have created unprecedented opportunities for studying microbial populations. For pathogens with comparatively low per-site mutation rates, such as DNA viruses and bacteria, whole-genome sequencing can reveal the accumulation of novel genetic variation between population samples taken at different times. The concept of 'measurably evolving populations' and related analytical approaches have provided powerful insights for fast-evolving RNA viruses, but their application to other pathogens is still in its infancy. We argue that previous distinctions between slow- and fast-evolving pathogens become blurred once evolution is assessed at a genome-wide scale, and we highlight important analytical challenges to be overcome to infer pathogen population dynamics from genomic data.

  • Phylogeography and population dynamics of dengue viruses in the Americas.

    16 October 2018

    Changes in Dengue virus (DENV) disease patterns in the Americas over recent decades have been attributed, at least in part, to repeated introduction of DENV strains from other regions, resulting in a shift from hypoendemicity to hyperendemicity. Using newly sequenced DENV-1 and DENV-3 envelope (E) gene isolates from 11 Caribbean countries, along with sequences available on GenBank, we sought to document the population genetic and spatiotemporal transmission histories of the four main invading DENV genotypes within the Americas and investigate factors that influence the rate and intensity of DENV transmission. For all genotypes, there was an initial invasion phase characterized by rapid increases in genetic diversity, which coincided with the first confirmed cases of each genotype in the region. Rapid geographic dispersal occurred upon each genotype's introduction, after which individual lineages were locally maintained, and gene flow was primarily observed among neighboring and nearby countries. There were, however, centers of viral diversity (Barbados, Puerto Rico, Colombia, Suriname, Venezuela, and Brazil) that were repeatedly involved in gene flow with more distant locations. For DENV-1 and DENV-2, we found that a "distance-informed" model, which posits that the intensity of virus movement between locations is inversely proportional to the distance between them, provided a better fit than a model assuming equal rates of movement between all pairs of countries. However, for DENV-3 and DENV-4, the more stochastic "equal rates" model was preferred.

  • Phylodynamics of H5N1 avian influenza virus in Indonesia.

    16 October 2018

    Understanding how pathogens invade and become established in novel host populations is central to the ecology and evolution of infectious disease. Influenza viruses provide unique opportunities to study these processes in nature because of their rapid evolution, extensive surveillance, large data sets and propensity to jump species boundaries. H5N1 highly pathogenic avian influenza virus (HPAIV) is a major animal pathogen and public health threat. The virus is of particular importance in Indonesia, causing severe outbreaks among poultry and sporadic human infections since 2003. However, little is known about how H5N1 HPAIV emerged and established in Indonesia. To address these questions, we analysed Indonesian H5N1 HPAIV gene sequences isolated during 2003-2007. We find that the virus originated from a single introduction into East Java between November 2002 and October 2003. This invasion was characterized by an initially rapid burst of viral genetic diversity followed by a steady rate of lineage replacement and the maintenance of genetic diversity. Several antigenic sites in the haemagglutinin gene were subject to positive selection during the early phase, suggesting that host-immune-driven selection played a role in host adaptation and expansion. Phylogeographic analyses show that after the initial invasion of H5N1, genetic variants moved both eastwards and westwards across Java, possibly involving long-distance transportation by humans. The phylodynamics we uncover share similarities with other recently studied viral invasions, thereby shedding light on the ecological and evolutionary processes that determine disease emergence in a new geographical region.

  • Identification of a novel second-generation circulating recombinant form (CRF48_01B) in Malaysia: a descendant of the previously identified CRF33_01B.

    16 October 2018

    A molecular epidemiological investigation conducted among injecting drug users in eastern Peninsular Malaysia in 2007 identified a cluster of sequences (n = 3) located outside any known HIV-1 genotype. Analyses of near full-length nucleotide sequences of these strains from individuals with no recognizable linkage revealed that they have an identical subtype structure comprised of CRF01_AE and subtype B', distinct from any known circulating recombinant forms (CRFs). This novel CRF, designated CRF48_01B, is closely related to CRF33_01B, previously identified in Kuala Lumpur. Phylogenetic analysis of multiple CRF48_01B genome regions showed that CRF48_01B forms a monophyletic cluster within CRF33_01B, suggesting that this new recombinant is very likely a descendant of CRF33_01B. CRF48_01B thus represents one of the first examples of a "second-generation" CRF, generated by additional crossover with pre-existing CRFs. Corroborating these results, Bayesian molecular clock analyses indicated that CRF48_01B emerged in approximately 2001, approximately approximately 8 years after the emergence of CRF33_01B.

  • U.S. Human immunodeficiency virus type 1 epidemic: date of origin, population history, and characterization of early strains.

    16 October 2018

    Human immunodeficiency virus (HIV) type 1 subtype B sequences (whole envelope and the p17 region of gag) were obtained from peripheral blood mononuclear cell samples collected in 1981 from seven HIV-infected U.S. individuals and in 1982 from one infected Canadian resident. Phylogenetic and nucleotide distance analyses were performed by using database sequences representing North American strains collected from 1978 to 1995. The estimated phylogeny was starlike, with early strains represented on different lineages. When sequences were grouped by years of collection, nucleotide distance comparisons demonstrated an increase in diversity over time and indicated that contemporary strains are more closely related to early epidemic strains than to each other. Using a recently developed likelihood ratio reduction procedure, the date of origin of the U.S. epidemic was estimated to be 1968 +/- 1.4 years. A coalescent approach was also used to estimate the population history of the U.S. subtype B epidemic. Our analyses provide new information that implies an exponential growth rate from the beginning of the U.S. HIV epidemic. The dating results suggest a U.S. introduction date (or date of divergence from the most recent common ancestor) that precedes the date of the earliest known AIDS cases in the late 1970s. Furthermore, the estimated epidemic growth curve shows a period of exponential growth that preceded most of the early documented cases and also indicates a leveling of prevalence rates in the recent past.