Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations.

    16 October 2018

    Polycystic ovary syndrome (PCOS) is a common, highly heritable complex disorder of unknown aetiology characterized by hyperandrogenism, chronic anovulation and defects in glucose homeostasis. Increased luteinizing hormone relative to follicle-stimulating hormone secretion, insulin resistance and developmental exposure to androgens are hypothesized to play a causal role in PCOS. Here we map common genetic susceptibility loci in European ancestry women for the National Institutes of Health PCOS phenotype, which confers the highest risk for metabolic morbidities, as well as reproductive hormone levels. Three loci reach genome-wide significance in the case-control meta-analysis, two novel loci mapping to chr 8p23.1 [Corrected] and chr 11p14.1, and a chr 9q22.32 locus previously found in Chinese PCOS. The same chr 11p14.1 SNP, rs11031006, in the region of the follicle-stimulating hormone B polypeptide (FSHB) gene strongly associates with PCOS diagnosis and luteinizing hormone levels. These findings implicate neuroendocrine changes in disease pathogenesis.

  • Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants.

    16 October 2018

    Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∼4 and ∼3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.

  • Robust Linear Models for Cis-eQTL Analysis.

    16 October 2018

    Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.

  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

    16 October 2018

    Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.

  • Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    16 October 2018

    Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.

  • Genetic variation in the CYP2B6 gene is related to circulating 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) concentrations: an observational population-based study.

    16 October 2018

    Since human CYP2B6 has been identified as the major CYP enzyme involved in the metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and that human 2B6 is a highly polymorphic CYP, with known functional variants, we evaluated if circulating concentrations of a major brominated flame retardant, BDE-47, were related to genetic variation in the CYP2B6 gene in a population sample.In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (men and women all aged 70), 25 single nucleotide polymorphisms (SNPs) in the CYP2B6 gene were genotyped. Circulating concentrations of BDE-47 were analyzed by high-resolution gas chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS).Several SNPs in the CYP2B6 gene were associated with circulating concentrations of BDE-47 (P = 10-4 to 10-9). The investigated SNPs came primarily from two haplotypes, although the correlation between the haplotypes was rather high. Conditional analyses adjusting for the SNP with the strongest association with the exposure (rs2014141) did not provide evidence for independent signals.Circulating concentrations of BDE-47 were related to genetic variation in the CYP2B6 gene in an elderly population.

  • Contribution of 32 GWAS-identified common variants to severe obesity in European adults referred for bariatric surgery.

    16 October 2018

    The prevalence of severe obesity, defined as body mass index (BMI) ≥ 35.0 kg/m(2), is rising rapidly. Given the disproportionately high health burden and healthcare costs associated with this condition, understanding the underlying aetiology, including predisposing genetic factors, is a biomedical research priority. Previous studies have suggested that severe obesity represents an extreme tail of the population BMI variation, reflecting shared genetic factors operating across the spectrum. Here, we sought to determine whether a panel of 32 known common obesity-susceptibility variants contribute to severe obesity in patients (n = 1,003, mean BMI 48.4 ± 8.1 kg/m(2)) attending bariatric surgery clinics in two European centres. We examined the effects of these 32 common variants on obesity risk and BMI, both as individual markers and in combination as a genetic risk score, in a comparison with normal-weight controls (n = 1,809, BMI 18.0-24.9 kg/m(2)); an approach which, to our knowledge, has not been previously undertaken in the setting of a bariatric clinic. We found strong associations with severe obesity for SNP rs9939609 within the FTO gene (P = 9.3 × 10(-8)) and SNP rs2815752 near the NEGR1 gene (P = 3.6 × 10(-4)), and directionally consistent nominal associations (P<0.05) for 12 other SNPs. The genetic risk score associated with severe obesity (P = 8.3 × 10(-11)) but, within the bariatric cohort, this score did not associate with BMI itself (P = 0.264). Our results show significant effects of individual BMI-associated common variants within a relatively small sample size of bariatric patients. Furthermore, the burden of such low-penetrant risk alleles contributes to severe obesity in this population. Our findings support that severe obesity observed in bariatric patients represents an extreme tail of the population BMI variation. Moreover, future genetic studies focused on bariatric patients may provide valuable insights into the pathogenesis of obesity at a population level.

  • The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis.

    16 October 2018

    The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n  =  198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI-trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03-1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1-1.4; all p < 0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p < 0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p  =  0.001).We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.

  • The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue.

    16 October 2018

    Genetic variants that associate with DNA methylation at CpG sites (methylation quantitative trait loci, meQTLs) offer a potential biological mechanism of action for disease associated SNPs. We investigated whether meQTLs exist in abdominal subcutaneous adipose tissue (SAT) and if CpG methylation associates with metabolic syndrome (MetSyn) phenotypes. We profiled 27,718 genomic regions in abdominal SAT samples of 38 unrelated individuals using differential methylation hybridization (DMH) together with genotypes at 5,227,243 SNPs and expression of 17,209 mRNA transcripts. Validation and replication of significant meQTLs was pursued in an independent cohort of 181 female twins. We find that, at 5% false discovery rate, methylation levels of 149 DMH regions associate with at least one SNP in a ±500 kilobase cis-region in our primary study. We sought to validate 19 of these in the replication study and find that five of these significantly associate with the corresponding meQTL SNPs from the primary study. We find that none of the 149 meQTL top SNPs is a significant expression quantitative trait locus in our expression data, but we observed association between expression levels of two mRNA transcripts and cis-methylation status. Our results indicate that DNA CpG methylation in abdominal SAT is partly under genetic control. This study provides a starting point for future investigations of DNA methylation in adipose tissue.

  • The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis.

    16 October 2018

    Recent advances in the understanding of the genetics of type 2 diabetes (T2D) susceptibility have focused attention on the regulation of transcriptional activity within the pancreatic beta-cell. MicroRNAs (miRNAs) represent an important component of regulatory control, and have proven roles in the development of human disease and control of glucose homeostasis. We set out to establish the miRNA profile of human pancreatic islets and of enriched beta-cell populations, and to explore their potential involvement in T2D susceptibility. We used Illumina small RNA sequencing to profile the miRNA fraction in three preparations each of primary human islets and of enriched beta-cells generated by fluorescence-activated cell sorting. In total, 366 miRNAs were found to be expressed (i.e. >100 cumulative reads) in islets and 346 in beta-cells; of the total of 384 unique miRNAs, 328 were shared. A comparison of the islet-cell miRNA profile with those of 15 other human tissues identified 40 miRNAs predominantly expressed (i.e. >50% of all reads seen across the tissues) in islets. Several highly-expressed islet miRNAs, such as miR-375, have established roles in the regulation of islet function, but others (e.g. miR-27b-3p, miR-192-5p) have not previously been described in the context of islet biology. As a first step towards exploring the role of islet-expressed miRNAs and their predicted mRNA targets in T2D pathogenesis, we looked at published T2D association signals across these sites. We found evidence that predicted mRNA targets of islet-expressed miRNAs were globally enriched for signals of T2D association (p-values <0.01, q-values <0.1). At six loci with genome-wide evidence for T2D association (AP3S2, KCNK16, NOTCH2, SCL30A8, VPS26A, and WFS1) predicted mRNA target sites for islet-expressed miRNAs overlapped potentially causal variants. In conclusion, we have described the miRNA profile of human islets and beta-cells and provide evidence linking islet miRNAs to T2D pathogenesis.