Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Continuous non-contact vital sign monitoring in neonatal intensive care unit.

    16 October 2018

    Current technologies to allow continuous monitoring of vital signs in pre-term infants in the hospital require adhesive electrodes or sensors to be in direct contact with the patient. These can cause stress, pain, and also damage the fragile skin of the infants. It has been established previously that the colour and volume changes in superficial blood vessels during the cardiac cycle can be measured using a digital video camera and ambient light, making it possible to obtain estimates of heart rate or breathing rate. Most of the papers in the literature on non-contact vital sign monitoring report results on adult healthy human volunteers in controlled environments for short periods of time. The authors' current clinical study involves the continuous monitoring of pre-term infants, for at least four consecutive days each, in the high-dependency care area of the Neonatal Intensive Care Unit (NICU) at the John Radcliffe Hospital in Oxford. The authors have further developed their video-based, non-contact monitoring methods to obtain continuous estimates of heart rate, respiratory rate and oxygen saturation for infants nursed in incubators. In this Letter, it is shown that continuous estimates of these three parameters can be computed with an accuracy which is clinically useful. During stable sections with minimal infant motion, the mean absolute error between the camera-derived estimates of heart rate and the reference value derived from the ECG is similar to the mean absolute error between the ECG-derived value and the heart rate value from a pulse oximeter. Continuous non-contact vital sign monitoring in the NICU using ambient light is feasible, and the authors have shown that clinically important events such as a bradycardia accompanied by a major desaturation can be identified with their algorithms for processing the video signal.

  • Using a mobile health application to support self-management in COPD: a qualitative study.

    16 October 2018

    Telehealth shows promise for supporting patients in managing their long-term health conditions, such as chronic obstructive pulmonary disease (COPD). However, it is currently unclear how patients, and particularly older people, may benefit from these technological interventions.To explore patients' expectations and experiences of using a mobile telehealth-based (mHealth) application and to determine how such a system may impact on their perceived wellbeing and ability to manage their COPD.Embedded qualitative study using interviews with patients with COPD from various community NHS services: respiratory community nursing service, general practice, and pulmonary rehabilitation.An embedded qualitative study was conducted to which patients were recruited using purposive sampling to achieve maximum variation. Interviews were carried out prior to receiving the mHealth system and again after a 6-month period. Data were analysed using a grounded theory approach.The sample comprised 19 patients (aged 50-85 years) with varied levels of computer skills. Patients identified no difficulties in using the mHealth application. The main themes encapsulating patients' experience of using the mHealth application related to an increased awareness of the variability of their symptoms (onset of exacerbation and recovery time) and reassurance through monitoring (continuity of care).Patients were able to use the mHealth application, interpret clinical data, and use these within their self-management approach regardless of previous knowledge. Telehealth interventions can complement current clinical care pathways to support self-management behaviour.

  • Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring.

    16 October 2018

    The identification of invalid data in recordings obtained using wearable sensors is of particular importance since data obtained from mobile patients is, in general, noisier than data obtained from nonmobile patients. In this paper, we present a signal quality index (SQI), which is intended to assess whether reliable heart rates (HRs) can be obtained from electrocardiogram (ECG) and photoplethysmogram (PPG) signals collected using wearable sensors. The algorithms were validated on manually labeled data. Sensitivities and specificities of 94% and 97% were achieved for the ECG and 91% and 95% for the PPG. Additionally, we propose two applications of the SQI. First, we demonstrate that, by using the SQI as a trigger for a power-saving strategy, it is possible to reduce the recording time by up to 94% for the ECG and 93% for the PPG with only minimal loss of valid vital-sign data. Second, we demonstrate how an SQI can be used to reduce the error in the estimation of respiratory rate (RR) from the PPG. The performance of the two applications was assessed on data collected from a clinical study on hospital patients who were able to walk unassisted.

  • Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors.

    16 October 2018

    The majority of patients in the hospital are ambulatory and would benefit significantly from predictive and personalized monitoring systems. Such patients are well suited to having their physiological condition monitored using low-power, minimally intrusive wearable sensors. Despite data-collection systems now being manufactured commercially, allowing physiological data to be acquired from mobile patients, little work has been undertaken on the use of the resultant data in a principled manner for robust patient care, including predictive monitoring. Most current devices generate so many false-positive alerts that devices cannot be used for routine clinical practice. This paper explores principled machine learning approaches to interpreting large quantities of continuously acquired, multivariate physiological data, using wearable patient monitors, where the goal is to provide early warning of serious physiological determination, such that a degree of predictive care may be provided. We adopt a one-class support vector machine formulation, proposing a formulation for determining the free parameters of the model using partial area under the ROC curve, a method arising from the unique requirements of performing online analysis with data from patient-worn sensors. There are few clinical evaluations of machine learning techniques in the literature, so we present results from a study at the Oxford University Hospitals NHS Trust devised to investigate the large-scale clinical use of patient-worn sensors for predictive monitoring in a ward with a high incidence of patient mortality. We show that our system can combine routine manual observations made by clinical staff with the continuous data acquired from wearable sensors. Practical considerations and recommendations based on our experiences of this clinical study are discussed, in the context of a framework for personalized monitoring.

  • Non-contact video-based vital sign monitoring using ambient light and auto-regressive models.

    16 October 2018

    Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient's face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter.

  • Logistic Regression-HSMM-Based Heart Sound Segmentation.

    16 October 2018

    The identification of the exact positions of the first and second heart sounds within a phonocardiogram (PCG), or heart sound segmentation, is an essential step in the automatic analysis of heart sound recordings, allowing for the classification of pathological events. While threshold-based segmentation methods have shown modest success, probabilistic models, such as hidden Markov models, have recently been shown to surpass the capabilities of previous methods. Segmentation performance is further improved when a priori information about the expected duration of the states is incorporated into the model, such as in a hidden semi-Markov model (HSMM). This paper addresses the problem of the accurate segmentation of the first and second heart sound within noisy real-world PCG recordings using an HSMM, extended with the use of logistic regression for emission probability estimation. In addition, we implement a modified Viterbi algorithm for decoding the most likely sequence of states, and evaluated this method on a large dataset of 10,172 s of PCG recorded from 112 patients (including 12,181 first and 11,627 second heart sounds). The proposed method achieved an average F1 score of 95.63 ± 0.85%, while the current state of the art achieved 86.28 ± 1.55% when evaluated on unseen test recordings. The greater discrimination between states afforded using logistic regression as opposed to the previous Gaussian distribution-based emission probability estimation as well as the use of an extended Viterbi algorithm allows this method to significantly outperform the current state-of-the-art method based on a two-sided paired t-test.

  • An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.

    16 October 2018

    Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of  -4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and  -5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of  -5.6 to 5.2 bpm and a bias of  -0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available.