In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes.

Type

Journal article

Journal

J Mol Evol

Publication Date

03/2000

Volume

50

Pages

264 - 275

Keywords

Codon, Escherichia coli, Evolution, Molecular, Haemophilus influenzae, Mycoplasma, Open Reading Frames, Phylogeny