Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Transitions of cytosine to thymine in CpG dinucleotides are the most frequent type of mutations observed in cancer. This increased mutability is commonly explained by the presence of 5-methylcytosine (5mC) and its spontaneous hydrolytic deamination into thymine. Here, we describe observations that question whether spontaneous deamination alone causes the elevated mutagenicity of 5mC. Tumours with somatic mutations in DNA mismatch-repair genes or in the proofreading domain of DNA polymerase ε (Pol ε) exhibit more 5mC to T transitions than would be expected, given the kinetics of hydrolytic deamination. This enrichment is asymmetrical around replication origins with a preference for the leading strand template, in particular in methylated cytosines flanked by guanines (GCG). Notably, GCG to GTG mutations also exhibit strand asymmetry in mismatch-repair and Pol ε wild-type tumours. Together, these findings suggest that mis-incorporation of A opposite 5mC during replication of the leading strand might be a contributing factor in the mutagenesis of methylated cytosine.

Original publication

DOI

10.1016/j.dnarep.2017.11.005

Type

Journal article

Journal

DNA repair

Publication Date

02/2018

Volume

62

Pages

1 - 7

Addresses

Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.

Keywords

Humans, Neoplasms, 5-Methylcytosine, DNA Polymerase II, DNA Replication, Mutagenesis, CpG Islands, DNA Mismatch Repair, Carcinogenesis