We present a hybrid radial basis function (RBF) sigmoid neural network with a three-step training algorithm that utilizes both global search and gradient descent training. The algorithm used is intended to identify global features of an input-output relationship before adding local detail to the approximating function. It aims to achieve efficient function approximation through the separate identification of aspects of a relationship that are expressed universally from those that vary only within particular regions of the input space. We test the effectiveness of our method using five regression tasks; four use synthetic datasets while the last problem uses real-world data on the wave overtopping of seawalls. It is shown that the hybrid architecture is often superior to architectures containing neurons of a single type in several ways: lower mean square errors are often achievable using fewer hidden neurons and with less need for regularization. Our global-local artificial neural network (GL-ANN) is also seen to compare favorably with both perceptron radial basis net and regression tree derived RBFs. A number of issues concerning the training of GL-ANNs are discussed: the use of regularization, the inclusion of a gradient descent optimization step, the choice of RBF spreads, model selection, and the development of appropriate stopping criteria.

Original publication




Journal article


IEEE Trans Neural Netw

Publication Date





942 - 952


Algorithms, Learning, Neural Networks (Computer), Statistics as Topic