Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

While malaria transmission varies seasonally, large inter-annual heterogeneity of malaria incidence occurs. Variability in entomological parameters, biting rates and entomological inoculation rates (EIR) have been strongly associated with attack rates in children. The goal of this study was to assess the weather's impact on weekly biting and EIR in the endemic area of Kisian, Kenya. Entomological data collected by the U.S. Army from March 1986 through June 1988 at Kisian, Kenya was analysed with concurrent weather data from nearby Kisumu airport. A soil moisture model of surface-water availability was used to combine multiple weather parameters with landcover and soil features to improve disease prediction. Modelling soil moisture substantially improved prediction of biting rates compared to rainfall; soil moisture lagged two weeks explained up to 45% of An. gambiae biting variability, compared to 8% for raw precipitation. For An. funestus, soil moisture explained 32% variability, peaking after a 4-week lag. The interspecies difference in response to soil moisture was significant (P < 0.00001). A satellite normalized differential vegetation index (NDVI) of the study site yielded a similar correlation (r = 0.42 An. gambiae). Modelled soil moisture accounted for up to 56% variability of An. gambiae EIR, peaking at a lag of six weeks. The relationship between temperature and An. gambiae biting rates was less robust; maximum temperature r2 = -0.20, and minimum temperature r2 = 0.12 after lagging one week. Benefits of hydrological modelling are compared to raw weather parameters and to satellite NDVI. These findings can improve both current malaria risk assessments and those based on El Niño forecasts or global climate change model projections.

Original publication




Journal article


Tropical medicine & international health : TM & IH

Publication Date





818 - 827


Department of Enviromental Health Sciences, John Hopkins School of Hygiene and Public Health, Baltimore, MD 21205-2179, USA.


Animals, Humans, Anopheles, Malaria, Insect Bites and Stings, Soil, Temperature, Weather, Rain, Models, Biological