Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In a previous paper [Artif. Intell. Med. 5 (1993) 431] we described RaPiD, a knowledge-based system for designing dental prostheses. The present paper discusses how RaPiD has been extended using techniques from computer vision and logic grammars. The first employs point distribution and active shape models (ASMs) to determine dentition from images of casts of patient's jaws. This enables a design to be customized to, and visualised against, an image of a patient's dentition. The second is based on the notion of a path grammar, a form of logic grammar, to generate a path linking an ordered sequence of subcomponents. The shape of an important and complex prosthesis component can be automatically seeded in this fashion. Combining these models now substantially automates the design process, beginning with a photograph of a dental cast and ending with an annotated and validated design diagram ready to guide manufacture.

Original publication




Journal article


Artificial intelligence in medicine

Publication Date





227 - 245


Department of Biomedical Informatics, Eastman Dental Institute for Oral Health Care Sciences, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.


Humans, Photography, Anthropometry, Prosthesis Design, Automation, Artificial Intelligence, Software