Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundNational and international amalgamation of genomic data offers opportunity for research and audit, including analyses enabling improved classification of variants of uncertain significance. Review of individual-level data from National Health Service (NHS) testing of cancer susceptibility genes (2002-2023) submitted to the National Disease Registration Service revealed heterogeneity across participating laboratories regarding (1) the structure, quality and completeness of submitted data, and (2) the ease with which that data could be assembled locally for submission.MethodsIn May 2023, we undertook a closed online survey of 51 clinical scientists who provided consensus responses representing all 17 of 17 NHS molecular genetic laboratories in England and Wales which undertake NHS diagnostic analyses of cancer susceptibility genes. The survey included 18 questions relating to 'next-generation sequencing workflow' (11), 'variant classification' (3) and 'phenotypical context' (4).ResultsWidely differing processes were reported for transfer of variant data into their local LIMS (Laboratory Information Management System), for the formatting in which the variants are stored in the LIMS and which classes of variants are retained in the local LIMS. Differing local provisions and workflow for variant classifications were also reported, including the resources provided and the mechanisms by which classifications are stored.ConclusionThe survey responses illustrate heterogeneous laboratory workflow for preparation of genomic variant data from local LIMS for centralised submission. Workflow is often labour-intensive and inefficient, involving multiple manual steps which introduce opportunities for error. These survey findings and adoption of the concomitant recommendations may support improvement in laboratory dataflows, better facilitating submission of data for central amalgamation.

Original publication

DOI

10.1136/jmg-2023-109645

Type

Journal article

Journal

Journal of medical genetics

Publication Date

03/2024

Volume

61

Pages

305 - 312

Addresses

Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK.

Keywords

Humans, Neoplasms, Genomics, Laboratories, State Medicine, Workflow, United Kingdom