Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Understanding the genetic aetiology of loci associated with a disease is crucial for developing preventative measures and effective treatments. Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, the utility of mouse models is limited in part by evolutionary divergence in transcription regulation for pathways of interest. Here, we summarize the alignment of genomic (exonic and multi-cell regulatory) annotations alongside Mendelian and complex disease-associated variant sites between humans and mice. Our results highlight the importance of understanding evolutionary divergence in transcription regulation when interpreting functional studies using mice as models for human disease variants.

Original publication




Journal article


Biol Lett

Publication Date





Mendelian disease, alignment, annotation, complex disease, conservation, orthologue