Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Highlights: 1) 1.6 million molecular diagnostic tests identified 1,388 SARS-CoV-2 infections in Guangdong Province, China, by 19th March 2020; 2) Virus genomes can be recovered using a variety of sequencing approaches from a range of patient samples. 3) Genomic analyses reveal multiple virus importations into Guangdong Province, resulting in genetically distinct clusters that require careful interpretation. 4) Large-scale epidemiological surveillance and intervention measures were effective in interrupting community transmission in Guangdong Summary: COVID-19 is caused by the SARS-CoV-2 coronavirus and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain due to low virus genetic variation early in the pandemic. Our results illustrate how the timing, size and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required as the number of cases imported from other countries is increasing.

Original publication

DOI

10.1101/2020.04.01.20047076

Type

Journal article

Publication Date

04/04/2020