Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundAs lockdown measures to slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begin to ease in the UK, it is important to assess the impact of any changes in policy, including school reopening and broader relaxation of physical distancing measures. We aimed to use an individual-based model to predict the impact of two possible strategies for reopening schools to all students in the UK from September, 2020, in combination with different assumptions about relaxation of physical distancing measures and the scale-up of testing.MethodsIn this modelling study, we used Covasim, a stochastic individual-based model for transmission of SARS-CoV-2, calibrated to the UK epidemic. The model describes individuals' contact networks stratified into household, school, workplace, and community layers, and uses demographic and epidemiological data from the UK. We simulated six different scenarios, representing the combination of two school reopening strategies (full time and a part-time rota system with 50% of students attending school on alternate weeks) and three testing scenarios (68% contact tracing with no scale-up in testing, 68% contact tracing with sufficient testing to avoid a second COVID-19 wave, and 40% contact tracing with sufficient testing to avoid a second COVID-19 wave). We estimated the number of new infections, cases, and deaths, as well as the effective reproduction number (R) under different strategies. In a sensitivity analysis to account for uncertainties within the stochastic simulation, we also simulated infectiousness of children and young adults aged younger than 20 years at 50% relative to older ages (20 years and older).FindingsWith increased levels of testing (between 59% and 87% of symptomatic people tested at some point during an active SARS-CoV-2 infection, depending on the scenario), and effective contact tracing and isolation, an epidemic rebound might be prevented. Assuming 68% of contacts could be traced, we estimate that 75% of individuals with symptomatic infection would need to be tested and positive cases isolated if schools return full-time in September, or 65% if a part-time rota system were used. If only 40% of contacts could be traced, these figures would increase to 87% and 75%, respectively. However, without these levels of testing and contact tracing, reopening of schools together with gradual relaxing of the lockdown measures are likely to induce a second wave that would peak in December, 2020, if schools open full-time in September, and in February, 2021, if a part-time rota system were adopted. In either case, the second wave would result in R rising above 1 and a resulting second wave of infections 2·0-2·3 times the size of the original COVID-19 wave. When infectiousness of children and young adults was varied from 100% to 50% of that of older ages, we still found that a comprehensive and effective test-trace-isolate strategy would be required to avoid a second COVID-19 wave.InterpretationTo prevent a second COVID-19 wave, relaxation of physical distancing, including reopening of schools, in the UK must be accompanied by large-scale, population-wide testing of symptomatic individuals and effective tracing of their contacts, followed by isolation of diagnosed individuals.FundingNone.

Original publication

DOI

10.1016/s2352-4642(20)30250-9

Type

Journal article

Journal

The Lancet. Child & adolescent health

Publication Date

11/2020

Volume

4

Pages

817 - 827

Addresses

Department of Applied Health Research and Institute for Global Health, University College London, London, UK; The Queen's College, University of Oxford, Oxford, UK. Electronic address: j.panovska-griffiths@ucl.ac.uk.

Keywords

Humans, Pneumonia, Viral, Coronavirus Infections, Clinical Laboratory Techniques, Contact Tracing, Disease Outbreaks, Communicable Disease Control, Models, Theoretical, Civil Defense, Schools, Adolescent, Child, School Health Services, Disease Transmission, Infectious, Pandemics, Betacoronavirus, COVID-19, SARS-CoV-2, COVID-19 Testing