Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:The 6-min walk test (6MWT) is a convenient method for assessing functional capacity in patients with cardiopulmonary conditions. It is usually performed in the context of a hospital clinic and thus requires the involvement of hospital staff and facilities, with their associated costs. OBJECTIVE:This study aimed to develop a mobile phone-based system that allows patients to perform the 6MWT in the community. METHODS:We developed 2 algorithms to compute the distance walked during a 6MWT using sensors embedded in a mobile phone. One algorithm makes use of the global positioning system to track the location of the phone when outdoors and hence computes the distance travelled. The other algorithm is meant to be used indoors and exploits the inertial sensors built into the phone to detect U-turns when patients walk back and forth along a corridor of fixed length. We included these algorithms in a mobile phone app, integrated with wireless pulse oximeters and a back-end server. We performed Bland-Altman analysis of the difference between the distances estimated by the phone and by a reference trundle wheel on 49 indoor tests and 30 outdoor tests, with 11 different mobile phones (both Apple iOS and Google Android operating systems). We also assessed usability aspects related to the app in a discussion group with patients and clinicians using a technology acceptance model to guide discussion. RESULTS:The mean difference between the mobile phone-estimated distances and the reference values was -2.013 m (SD 7.84 m) for the indoor algorithm and -0.80 m (SD 18.56 m) for the outdoor algorithm. The absolute maximum difference was, in both cases, below the clinically significant threshold. A total of 2 pulmonary hypertension patients, 1 cardiologist, 2 physiologists, and 1 nurse took part in the discussion group, where issues arising from the use of the 6MWT in hospital were identified. The app was demonstrated to be usable, and the 2 patients were keen to use it in the long term. CONCLUSIONS:The system described in this paper allows patients to perform the 6MWT at a place of their convenience. In addition, the use of pulse oximetry allows more information to be generated about the patient's health status and, possibly, be more relevant to the real-life impact of their condition. Preliminary assessment has shown that the developed 6MWT app is highly accurate and well accepted by its users. Further tests are needed to assess its clinical value.

Original publication

DOI

10.2196/13756

Type

Journal article

Journal

JMIR mHealth and uHealth

Publication Date

03/01/2020

Volume

8

Addresses

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.