Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A group of patients who had cancer as a child were previously found to have distinct patterns of morphological abnormalities. In this study, we investigated the added value of 3D shape analysis to characterize their facial morphology. Primarily, we showed in an objective and quantitative manner that the overall facial dysmorphism of the individuals who had had a childhood cancer was significantly greater than that of the controls. We also demonstrated how the same approach can be used to detect a similar disparity for a more localized malar region comprising customized disconnected patches defined on both sides of the face. In addition, by comparing original face surfaces to their mirrored forms, we confirmed that the patient group had significantly greater facial asymmetry than the controls. Each of these results made use of surface shape differences not detectable by simple linear or angular characteristics as might be used in analyses based on measures captured manually or derived from landmarks annotating 2D photographic images. We conclude that 3D morphometric analysis of a relatively small heterogeneous patient group can further delineate face shape differences from typically developing individuals that are too subtle or geometrically complex to identify or quantify objectively with conventional clinical and anthropometric approaches. © 2016 Wiley Periodicals, Inc.

Original publication

DOI

10.1002/ajmg.a.37850

Type

Journal article

Journal

American journal of medical genetics. Part A

Publication Date

11/2016

Volume

170

Pages

2905 - 2915

Addresses

Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands.

Keywords

Face, Humans, Neoplasms, Facial Asymmetry, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Cluster Analysis, Case-Control Studies, Image Processing, Computer-Assisted, Adolescent, Adult, Child, Female, Male, Young Adult