Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Wolbachia are endosymbionts that are found in many insect species and can spread rapidly when introduced into a naive host population. Most Wolbachia spread when their infection frequency exceeds a threshold normally calculated using purely population genetic models. However, spread may also depend on the population dynamics of the insect host. We develop models to explore interactions between host population dynamics and Wolbachia infection frequency for an age-structured insect population regulated by larval density dependence. We first derive a new expression for the threshold frequency that extends existing theory to incorporate important details of the insect's life history. In the presence of immigration and emigration, the threshold also depends on the form of density-dependent regulation. We show how the type of immigration (constant or pulsed) and the temporal dynamics of the host population can strongly affect the spread of Wolbachia. The results help understand the natural dynamics of Wolbachia infections and aid the design of programs to introduce Wolbachia to control insects that are disease vectors or pests.

Original publication

DOI

10.1086/658121

Type

Journal article

Journal

The American naturalist

Publication Date

03/2011

Volume

177

Pages

323 - 333

Addresses

Department of Zoology, University of Oxford, United Kingdom. penelope.hancock@zoo.ox.ac.uk

Keywords

Animals, Aedes, Wolbachia, Animal Migration, Seasons, Insect Vectors, Population Density, Population Dynamics, Symbiosis, Life Cycle Stages, Models, Biological, Host-Pathogen Interactions