Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACT Image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data. Here we predict consensus molecular subtypes (CMS) of colorectal cancer (CRC) from standard H&E sections using deep learning. Domain adversarial training of a neural classification network was performed using 1,553 tissue sections with comprehensive multi- omic data from three independent datasets. Image-based consensus molecular subtyping (imCMS) accurately classified CRC whole-slide images and preoperative biopsies, spatially resolved intratumoural heterogeneity and provided accurate secondary calls with higher discriminatory power than bioinformatic prediction. In all three cohorts imCMS established sensible classification in CMS unclassified samples, reproduced expected correlations with (epi)genomic alterations and effectively stratified patients into prognostic subgroups. Leveraging artificial intelligence for the development of novel biomarkers extracted from histological slides with molecular and biological interpretability has remarkable potential for clinical translation.

Original publication

DOI

10.1101/645143

Type

Working paper

Publication Date

2019

Keywords

on behalf of S:CORT consortium